Parallelization of Tau-Leap Coarse-Grained Monte Carlo Simulations on GPUs

Lifan Xu and Michela Taufer
Dept. of Computer & Inf. Sciences

University of Delaware
Email: {xulifan, taufer} @udel.edu

Abstract—The Coarse-Grained Monte Carlo (CGMC)
method is a multi-scale stochastic mathematical and simulation
framework for spatially distributed systems. CGMC simula-
tions are important tools for studying phenomena such as
catalysis, crystal growth, surface diffusion, phase transitions
on single crystals, and cell membrane receptor dynamics.
In parallel CGMC, the tau-leap method is used for parallel
simulations that are executed on traditional CPU -clusters
in a master-slave setting. Unfortunately the communications
between master and slaves negatively impact speedup and
scalability.

In this paper, we explore the potentials of GPUs for the
tau-leap method and we present an extensive performance
evaluation that leads to the most suitable degree of parallelism
for this method under different simulation profiles. We show
how the efficient parallelization of the tau-leap method for
GPUs includes (1) the redefinition of its data structures, (2)
the redesign of its algorithm, and (3) the selection of the
most appropriate degree of parallelism (i.e., fine-grained or
course-gained) on a single GPU or multiple GPUs. Exceptional
performance improvements can thus be achieved for this
method.

Keywords-Parallel programming; GPU programming; Monte
Carlo methods; Data parallelism on GPUs.

I. INTRODUCTION

The Coarse-Grained Monte Carlo (CGMC) method is a
multi-scale stochastic mathematical and simulation frame-
work for spatially distributed systems [4]. In the CGMC
method, microscopic cells are grouped together into coarse
cells, and this leads to tremendous acceleration in compar-
ison to a microscopic MC simulation. In addition, the tau-
leap CGMC method enables to take coarse time steps by
executing multiple events at each time for all cells [3]. This
is a key ingredient that can overcome the curse of one event
at a time of the microscopic Monte Carlo (MC) method and
allow time synchronization of multiple processors. CGMC
simulations are important tools for studying phenomena
such as catalysis, crystal growth, surface diffusion, phase
transitions on single crystals, and cell membrane receptor
dynamics.

Towards the goal of simulating larger, more complex
phenomena more efficiently, it is desirable to accelerate MC
simulations. Recent efforts have explored the potential of
GPUs for density functional theory (DFT) and molecular dy-
namics (MD) simulations [12], [11]. To our knowledge, there

Stuart Collins and Dionisios G. Vlachos
Dept. of Chemical Engineering
University of Delaware
Email: vlachos@udel.edu

is no previous work on parallelization of the CGMC method.
Existing work targeting the microscopic MC method [9] and
it may be limited to equilibrium rather than kinetic systems.
In addition, the microscopic MC method is inefficient for
large scale systems. In contrast, the CGMC method provides
profound acceleration to enable simulations of large length
and time scales. In this paper, we contribute to this effort
by exploring the potential of GPU platforms for the tau-leap
method supported by CUDA. To our knowledge, this is the
first parallel implementation of this method. In particular,
we present an extensive performance evaluation leading to
the most suitable type and degree of parallelism for the tau-
leap method under different application profiles. We show
how the efficient parallelization of the tau-leap method for
GPUs includes (1) the redefinition of the data structures, (2)
the redesign of the algorithm, and (3) the selection of the
most appropriate degree of parallelism (i.e., fine-grained or
coarse-grained) on one single GPU or multiple GPUs.

The rest of this paper is organized as follows: Section II
provides a short overview of GPU programming and the
tau-leap method on CPUs; Section III describes different
parallelization approaches for the tau-leap method on GPUs;
Section IV presents the extensive performance evaluation of
these approaches; and Section V concludes the paper and
presents future work.

II. BACKGROUND AND RELATED WORK
A. GPU Programming

GPUs are massively parallel multi-threaded devices capa-
ble of executing a large number of active threads concur-
rently. A GPU consists of multiple streaming multiproces-
sors, each of which contains multiple scalar processor cores.
For example, NVIDIA’s G80 GPU architecture contains 16
such multiprocessors, each of which contains 8 cores, for
a total of 128 cores which can handle up to 12,288 active
threads in parallel. Advanced GPU systems such as the Tesla
S1070 include multiple GPUs that can be accessed and used
simultaneously by an application using OpenMP pragma
directives. In addition, the GPU has several types of memory,
most notably the main device memory (global memory) and
the on-chip memory shared between all cores of a single
multiprocessor (shared memory) [8].

NVIDIA has introduced the CUDA language library,
which facilitates the use of GPUs for general purpose
programming by providing a minimal set of extensions to
the C programming language. From the perspective of the
CUDA programmer, the GPU is treated as a co-processor
to the main CPU. A function that executes on the GPU,
called a kernel, consists of multiple threads each executing
the same code, but on different data, in a manner referred
to as “single instruction, multiple data” (SIMD). Further,
threads can be grouped into thread blocks, an abstraction
that takes advantage of the fact that threads executing on the
same multiprocessor can share data via the on-chip shared
memory, allowing a limited degree of cooperation between
threads in the same block [8].

B. Sequential and Parallel CGMC on CPUs

In microscopic MC simulations, a large number of mi-
croscopic sites, e.g., 10,000x10,000 sites, are occupied by
different molecules with a maximum of one molecule per
site. Neighboring sites are grouped into coarse-grained (CG)
cells and a closure is applied at the stochastic level to
resident molecules to describe their distribution in the cell
(see Figure 1). The molecules are allowed to interact with,
react with, and diffuse to nearby cells [5].

In the sequential CGMC, the probabilities (gamma) of
every possible reaction (i.e., adsorption, desorption, and dif-
fusion) are calculated sequentially and an event is executed
based on probabilities [7]. This execution may change one
molecule to another different molecule or diffuse from one
cell to its neighbor cell, thus changing the population cover-
age (theta). The simulation updates theta, recalculate gamma
according to theta and loop again (parameter synchroniza-
tion). In the parallel CGMC, the tau-leap method can be
used to assure scalability [3] and this approach extends
the tau-leap method from well mixed systems (spatially
homogeneous) [10], [6], [1], [2] to spatially distributed.
The essence of the tau-leap method is that instead of
executing one reaction in every microscopic time interval
and changing the participating species by stoichiometric
populations, the scientist selects a coarse time increment
(tau), usually larger than the microscopic one. In this coarse
time, each reaction is fired multiple times and the population
is updated after each time step accordingly. The number
of times each reaction is fired is selected randomly from a
Poisson distribution. The parallel CGMC simulations based
on the tau-leap method can be executed on high-end clusters
of CPUs, one CPU for each cell in a master-slave setting.
The master node defines and broadcasts tau. Slave nodes
receive tau, compute gamma, select events, execute events,
and send a package to the master with their new population
changes. The master collects, changes, and broadcasts the
new population and tau to all the slaves. Slaves receive
changes, update event probabilities, calculate the local tau,
and send it to the master that restarts the cycle. An analysis

of the algorithm outlined how the communications between
master and slaves negatively impact speedup and scalability
on traditional clusters.

III. PARALLELIZATIONS OF THE TAU-LEAP METHOD ON
GPU

Since the GPU architecture is inherently different than
traditional CPU architectures, code development and opti-
mization for the GPU involve different approaches including
the redesign of the data structures and the computation
algorithms. Figure 2 shows the tau-leap method and those
parts that can be executed on CPU and on GPU. This section
presents different approaches to parallelize this method.

A. From Global to Shared Memory

Similarly as on CPUs, in a first parallelization of the
tau-leap method on GPU, each thread is in charge of one
cell and iteratively performs a given number of leaps, each
with length tau (GPU+global memory). For each iteration,
the thread first reads the probability of every event in
its cell (gamma) and selects the events to execute based
on a Poisson (or a binomial) distribution. Events include
diffusion, adsorption, and desorption. When all the selected
events are executed, the thread checks for any violation,
i.e., whether there is a negative number of molecules or the
number of molecules exceeds the number of microscopic
sites in that cell. If there is no violation, the population
coverage (theta) is updated; otherwise, the length of the leap,
tau, is cut to half and the shorter leap including less events
is re-executed. Once all the threads have updated their theta,
each thread recalculates gamma for its events based on its
own theta and that of its neighbors (synchronization).

This simple implementation has a major drawback, the
frequent and expensive synchronization of the gamma and
theta variables which cost is even higher if these variables
are stored in global memory. Synchronizations through
global memory cost 400-600 GPU cycles per access versus
one cycle per read/write when the data is in shared memory.
To recalculate gamma, each thread has to communicate
with its neighbors. Because of the way the shared memory
is organized, moving gamma into shared memory requires
keeping all the threads in one block. The block maximum
capacity of 512 threads becomes a limitation. On the other
hand, we can move theta into shared memory, we can
have threads selecting events based on gamma, and we
can update theta locally in shared memory efficiently. After
each leap, the threads have to write their own theta back
to global memory and update their own gamma according
to its neighbors’ theta. This is the approach we used in
our second parallelization of the tau-leap implementation for
GPUs (GPU+shared memory).

B. From Cells to Macro-Cells

While using shared memory for the synchronization
makes simulations definitely faster, when performing sim-

B -

Figure 1. Mapping microscopic lattice sites into coarse-grained (CG) cells. Red dots indicate atoms residing on the lattice.

Map N*N microsites to n*n cells (where N>>n) |—»|

CPU

1

Read simulation instruction from input file | —

Select tau for this leap

I

CPU

.

Update time using tau

Calculate theta and gamma >

!

Generate a list of events that occur in

CPU

I

|—> Use tau-leap method to simulate a leap

Time = simulation time ?

la

this leap
v

Execute events

v

Update theta
v

End —{ CPU

Update gamma by using theta

Figure 2. The parallel tau-leap method.

-..|..*.

Figure 3. Example of macro-cells with 1-, 2-, and 3-layers centered on cell 1. The numbers indicate CG cells.

ulation steps, we have to consider that data in this memory
is available only to the threads in the same block. Thus, both
the data assigned to each single thread and the threads’ ex-
ecution have to be reorganized accordingly. We address this

requirement with a multi-layer tau-leap method in which we
redefine the data structures to be a collection of neighboring
CG cells grouped into clusters of cells, termed hereafter
macro-cells. In other words, each cell is replaced by a

macro-cell including its multiple neighbor cells organized
in rhomboid shapes and each thread or block deals with one
macro-cell. Macro-cells can have different sizes (or layers).
Figure 3 shows three macro-cells with 1-, 2-, and 3-layers
respectively where the 1-layer implementation corresponds
to the GPU shared memory implementation described in the
section above. We also redesign the way events are executed.
Each thread simulates events in one macro-cell. Single cells
are replicated across multiple macro-cells (see Figure 4) and,
thus, events associated with a cell are also replicated across
macro-cells (or threads).

13/

009
e ©
0-00

2-layer macro-cells @

Figure 4. Example of two overlapping 2-layer macro-cells.

In a 2-layer implementation, each macro-cell includes a
centered CG cell, like for the implementations described
in Section II, and a centered CG cell’s four neighbor CG
cells (see Figure 3). In leap 1, threads execute the events
for all the five cells in their assigned macro-cell; in leap 2,
threads execute the events for the centered CG cell only,
since the four neighbor CG cells may contain obsolete data
at this point. This is not the case for the centered CG cell.
Synchronizations across threads sharing cells are performed
every two leaps. If we enlarge the macro-cell to 3 layers,
then each macro-cell includes one centered cell, its four
neighbors, and the neighbor cells of these four neighbors
(see Figure 3). In a 3-layer implementation, the synchro-
nization occurs every 3 leaps. By doing so, our tau-leap
method uses small, adjacent portions of the global memory
that fit in shared memory and are accessed simultaneously
by multiple threads. One important aspect of our algorithm is
the dynamic change of the macro-cell size as the simulation
evolves. More in general, in an n-layer implementation, we
start with an n-layer structure per thread in leap 1, an (n-1)-
layer structure in leap 2, ..., and a 1-layer structure in leap
n. At the end of each leap, the thread peals the macro-cell
of the most external shell of cells removing them from the
computation. The parameter synchronization among threads
is performed every n leaps. This allows us to conserve the
accuracy and, at the same time, massively parallelize the
execution with communications among threads only every n

leaps. On GPUs, the multi-layer tau-leap method can have
different degrees of thread parallelism from course-grained
to fine-grained parallelism. In a coarse-grained algorithm,
one thread is in charge of one macro-cell. In a fine-grained
algorithm, one block is in charge of one macro-cell and
each block has as many threads as the number of cells in
one macro-cell.

C. Multiple vs. Single GPUs

The maximum size (in number of cells) of a molecular
system on a single GPU is limited by the maximum number
of threads the GPU can serve, i.e., 65,536. In other words,
systems with more than 65,536 cells cannot be simulated
with a k-layer tau-leap method on a single GPU but can
be simulated using multiple GPUs. Again, different paral-
lelizations can be implemented. In a naive approach based
on the simple example provided by NVIDIA in the CUDA
SDK, we assign one GPU to each CPU thread. We also
assign simulation regions to each GPU and use a 2-layer
fine-grained algorithm to compute partial results for each
region. The partial results are copied back to the CPU at the
end of two leaps where all CPU threads write their data to
a specified memory location and update it. At this point the
next two leaps can start. This implementation has a major
drawback: the communication between CPUs and GPUs as
well as the communication among CPU threads.

To address this problem, we combine CUDA and
OpenMP, and use the new memory features in CUDA2.2+
as a shared memory between CPU threads. The first feature
is portable pinned memory (ppm) which is available to all
host threads once allocated. Portable pinned memory can be
used as a shared memory among CPU threads and it can be
freed by any CPU thread. It works for contexts that predate
the allocation and contexts that are created after the alloca-
tion. The second feature is mapped pinned memory (mpm)
which is also called “zero-copy”. Programmers can allocate
mapped memory on the host side that can ultimately be
mapped to a GPU’s address space. By using API functions
supplied by CUDA, we can get the address of this memory
on the device side. With mapped pinned memory, there is no
explicit memory copy between CPU and GPU. The copy is
implicitly performed while the kernel function is launching.
The third feature is write combined memory (wcm) which
can free up L1 and L2 cache resources, making more cache
available to the rest of the application. Since write-combined
memory is not snooped during transfers across the PCI
Express bus, performance can be improved by up to 40% [8].

In addition to the naive implementation described above
(Multi-GPU), we implemented three other versions of
our tau-leap method for multi-GPUs: (1) a version in-
cluding all the three features in which we combine
CUDAZ2.2, OpenMP, portable pinned memory, mapped
pinned memory, and write-combined memory (Multi-GPU
OpenMP+ppm+mpm+wem); (2) a version in which we

2-layer
@
o0
&

o0 900

3-layer
O
® 00

Leap 1 Leap 2

-

Leap 3 Leap 4

Figure 5. Synchronizations with 2- and 3-layer algorithms.

combine CUDA2.2, OpenMP, portable pinned memory, and
mapped pinned memory (Multi-GPU OpenMP+ppm+mpm);
and (3) a version in which we combine CUDA2.2,
OpenMP, and portable pinned memory only (Multi-GPU
OpenMP+ppm). The selection of the features in each imple-
mentation is based on information in the CUDA program-
ming guide [8]. Some of these features are indeed beneficial
only for special cases. For example, for GPUs integrated
onto the motherboard, mapped pinned memory can eliminate
superfluous memory copy. However, for discrete GPUs,
mapped pinned memory is beneficial only if memory is read
or written exactly once and the read or write is coalesced.
The set of configurations chosen in this paper allows us to
explore these special cases for our application.

IV. WHAT PARALLELISM FOR WHAT MOLECULAR
SYSTEM?

The key question in this paper is how much parallelism
is there in the tau-leap method. Different parallelizations are
presented in Section III, each with strengths and weaknesses
that can be correlated to the profile of the molecular system
in general and its size in particular.

A. Performance Characterization

We quantify the impact of the different parallelization
techniques presented above in terms of the number of events
executed in one millisecond. We compare the performance
of CGMC simulations of 128 leaps (each of 0.01s) on GPUs
for three case studies:

o Case Study 1: sequential CPU vs. GPU+global memory
vs. GPU+shared memory implementations

o Case Study 2: 1-layer vs. 2-layer implementations with
different degrees of parallelism (i.e, coarse- vs. fine-
grained parallelism) and using shared memory

o Case Study 3: Single-GPU implementations vs. multi-
GPU implementations

We consider molecular systems with variable number of CG
cells. Molecules within cells are assumed to be well mixed.
The molecules of each cell are allowed to interact with and
diffuse to nearby cells. For the sequential CGMC on CPU,
we used an Intel(R) Core(TM)2 Extreme 3GHz desktop.
For our GPU simulations, we used one and two GPUs
from a Tesla S1070 system with thirty multiprocessors,
240 cores and 4 GB global memory. The performance
values presented are the average values computed over three
repeated simulations. The standard deviation is not reported
because it is close to zero.

Figure 6 shows Case Study 1 where performance values
are measured for the simulations of molecular systems with
size ranging from 16 to 32,768 cells using a CPU im-
plementation, a GPU implementation using global memory
only (GPU+global memory), and a GPU implementation
benefiting from shared memory (GPU+shared memory). The
simulations are performed on a single GPU. Note that
here the emphasis is on the benefits of efficiently using
the memory organization on GPUs to gain performance
compared to the sequential CPU implementation. As showed
in the figure, the performance of the CPU implementation
remains constant as the number of cells grows. For the
GPU implementation using global memory, the performance
increases, reaching its peak for a molecular system of 2,048
cells, and then decreases as the number of cells increases.
The peak performance is about 16X faster than on CPUs
when the system is making full use of all the GPU resources.
For the GPU implementation using shared memory, the peak
performance is approx. 100X faster than the CPU implemen-
tation due to the drastic reduction in global memory access.

Figure 7 shows Case Study 2 where performance values
are measured for the simulations of molecular systems
with size ranging from 16 to 12,288 cells using a 1-layer
implementation (also called GPU+shared memory), a 2-
layer implementation with coarse-grained thread parallelism

40000+

35000

30000

25000]

20000

events/msec

15000 —

10000 H

5000 - H

TWIWH Al A g

A e Al T

16 32 64

128 256 512 1024 1536 2048 4096 8192 1228816384 32768

number of cells

. sequential CPU

|:| GPU-+global memory

D GPU-+shared memory

Figure 6. Performance comparison of global vs. shared memory implementations

40000+

35000

30000

25000

20000

events/msec

15000}

10000}

5000

0..:.:1.::[.[[[

16 32 64

128 256

384

512 1024 1536 2048 4096 8192 12288

number of cells

- sequential CPU

D 1-layer shared memory

Figure 7.

(2-layer coarse-grained), and 2-layer implementation with
fine-grained thread parallelism (2-layer fine-grained). Again
the simulations are performed on a single GPU. This time
the emphasis is on the size of the system and the more
suitable degree of parallelism for a given system size. We
observe that the 2-layer coarse-grained parallelism does not
outperform the other two approaches. This is because in
the first of the two leaps performed sequentially before a
synchronization (see Figure 5), the thread has to deal with
five cells and all the associated events. Even if, in the
next leap, the same thread deals with only the events of
the centered cell, the average number of cells considered
per leap is still three times higher. The fine-grained thread

D 2-layer coarse-grained
. 2-layer fine-grained

Performance comparison of 1-layer vs. 2-layer implementations.

parallelism addresses this challenge: instead of one single
thread, in this implementation each block contains five
threads and is in charge of one macro-cell. Each thread
now refers to one single cell in the macro-cell. By doing
this, the burden of each thread considerably reduces and the
five threads can collaborate on the centered cell at every
second leap. We are in average 2X faster compared to the
1-layer implementation and about 42X faster than CPUs
when the system size is small. This is because 2-layer fine-
grained parallelism uses the full GPU resources earlier and
the synchronization penalty can be hidden by the massive
number of threads. At 512 cells, we identify a sweet-spot
when the performance of the 1-layer algorithm matches the

performance of the 2-layer fine-grained algorithm before to
overcome the latter.

Figure 8 shows Case Study 3 where performance values
are measured for the simulations of molecular systems with
size ranging from 2,048 to 102,400 cells using a 1-layer
implementation, a 2-layer implementation with fine-grained
thread parallelism, and multi-GPU implementations using
the 2-layer fine-grained algorithm. Note that for the first and
second configurations the max size of the system that can be
simulated is 32,768 cells. Here, the key aspect we want to
address is the scaling of our simulations beyond traditionally
simulated sizes, i.e., 32,000 cells. Note that this limit is
dictated by hardware constraints rather than the scientist’s
interest. As emphasized in Section III, to overcome this
limit, we have to use multiple GPUs efficiently. As showed
in Figure 8, the naive multi-GPU implementation performs
poorly due to the data copied between CPU and GPU at
every leap and the expensive communication among CPU
threads.

The implementation with CUDA2.2, OpenMP, portable
pinned memory, mapped pinned memory, and write-
combined memory (Multi-GPU OpenMP+ppm+mpm-+wcm)
shows poor performance as the number of cells grows
because write-combined memory is beneficial for CPU
write-only buffers. In our case, our implementation reads
and writes multiple times. For the implementation with
CUDAZ2.2, OpenMP, portable pinned memory, and mapped
pinned memory (Multi-GPU OpenMP+ppm+mpm), the
zero-copy approach is beneficial only if the memory is read
or written exactly once and the read or write is coalesced.
For our application, we read and write multiple times and
we are not coalescing because the number of threads per
block is only five (we are indeed using fine-grained thread
parallelism). In the coalesced case, the number of threads
per block should be 64 or 128 threads. Finally, in the
implementation with CUDA, OpenMP, and portable pinned
memory (Multi-GPU OpenMP+ppm), we observe excellent
performance where OpenMP is beneficial for multi-threaded
programming and portable memory serves as a shared mem-
ory between CPU threads. The combination of these two
techniques can definitely assure scalability. Using multiple
GPUs can provide scientists with a platform for simulating
larger systems at an average 120X faster speedup than the
sequential CPU implementation.

Overall, our analysis clearly identifies three application
profiles that benefit from different parallelization methods.
When the system is small (with less than 512 cells), it
is recommended to run on a single GPU and use a 2-
layer fine-grained algorithm. For averaged sized systems
with the number of cell ranging between 512 and 4,096,
simulations should still run on a single GPU but using 1-
layer algorithms. Our multi-GPU implementation based on
CUDAZ2.2, OpenMP, and portable pinned memory makes it
feasible to run simulations of large and very large systems,

guaranteeing significant gains in performance compared with
a CPU implementation.

B. Accuracy Assessment

Clearly, even the fastest CGMC code would be useless if
the results it produces are not accurate. Thus, we performed
several tests of the accuracy of our implementation by per-
forming simulations of three different species of molecules,
A, B, and C, where A can change to B and vice-versa;
two B molecules can change to C and vice-versa; and
A, B, and C can diffuse. Figures 9(a) and 9(b) show the
accuracy for a system of 18,000 molecules as the simulation
evolves on both CPU and GPU, respectively. The GPU
implementation uses 2-layer coarse-grained parallelism. In
both cases the system reaches the equilibrium after approx.
50 leaps and presents the same behavior. Similar results were
observed for larger systems and the other methods described
in Section III.

V. CONCLUSION

In this paper we presented an extensive performance
evaluation of different parallel implementations of the tau-
leap method for CGMC simulations on single and multi-
GPUs. Our analysis leads to the identification of the most
suitable parallel implementation for CGMC simulations
given a molecular system with a certain size. We observed
how for small systems (with less than 512 CGMC cells),
a GPU implementation of the tau-leap method based on
2-layer fine-grained thread parallelism can achieve up to
42 times speedup in terms of numbers of events per mil-
lisecond, compared to the sequential implementation on
a CPU. For averaged sized systems (with the number of
cells ranging between 512 and 4,096), an implementation
based on a 1-layer algorithm can be 100 faster than a CPU
implementation. Large systems (i.e., larger than 13,000 cells
with a 2-layer fine-grained implementation and 65,536 cells
with a l-layer implementation) cannot be simulated with
a single GPU because they require a number of threads
higher than the maximum number of threads the GPU
can serve. Our multiple GPUs implementation based on
CUDA2.2, OpenMP, and portable pinned memory allows
us to overcome this limit and is 120X faster than on a
CPU. Future work includes the extension of the performance
evaluation to molecular systems presenting heterogeneity in
their molecular distribution in the simulated region and the
performance comparison of our GPU implementations with
multi-core CPU implementations.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation grant #0941318 “CDI-Type I: Bridging the Gap
Between Next-Generation High Performance Hybrid Com-
puters and Physics Based Computational Models for Quan-
titative Description of Molecular Recognition”, and grant

40000+

35000

30000 |

25000

20000

events/msec

15000}

10000}

5000

128 256 512 1024 2048 4096 8192 16384 32768 65536 98304 102400

w bk k

number of cells

D 1-layer shared memory
- 2-layer fine-grained
B Vuti-GPu

Multi-GPU OpenMP+ppm+mpm-+wcm
m]] Multi-GPU OpenMP+ppm+mpm
E Multi-GPU OpenMP+ppm

Figure 8. Performance comparison of single vs. multi GPU implementations.

CPU CGMC simulation, tau=0.01

200000
1800003
16000012

-]

2 1400001 %

3 e

2 120000

o]

E 1000004—=%

80000-] % e

60000 |—+*-,

40000 o

200001+

number o

0 20 40 60 80 100 120 140
number of leaps

-------- molecule A’ = = molecule B ==== molecule C

(a) Results on CPU

number of molecules

200000,
1800001
1600001
14000043
12000042
1000004 %
80000 % .
6000042
400001,
20000

GPU two-layer CGMC simulation, tau=0.01

o
i
W

0 20 40 60 80 100 120 140
number of leaps

-------- molecule A = = molecule B ==== molecule C

(b) Results on GPU

Figure 9. Accuracy comparison of simulations on CPU and GPU.

#0922657 “MRI: Acquisition of a Facility for Computational
Approaches to Molecular-Scale Problems”; by the U.S.
Army, grant #YIP54723-CS “Computer-Aided Design of
Drugs on Emerging Hybrid High Performance Computers”,
by DOE, grant #DE-FG02-05ER25702, and by the NVIDIA
University Professor Partnership Program. The authors want
to thank Sumit Gupta from NVIDIA for his valuable advice
with multi-GPUs.

REFERENCES

[1] Y. Cao, D. Gillespie, and L. Petzold. Avoiding Negative
Populations in Explicit Poisson Tau-leaping. Journal of
Chemical Physics, 123(5):541041-0541048, 2005.

(2]

(3]

(4]

(3]

A. Chatterjee, D. Vlachos, and M. Katsoulakis. Binomial
Distribution based Tau-leap Accelerated Stochastic Simula-
tion. Journal of Chemical Physics, 122:0241121-0241126,
2005.

A. Chatterjee and D. G. Vlachos. Temporal Acceleration
of Spatially Distributed Kinetic Monte Carlo Simulations.
Journal of Computational Physics, 211:596615, 2006.

A. Chatterjee and D. G. Vlachos. An Overview of Spatial
Microscopic and Accelerated Kinetic Monte Carlo Methods.
J. of Computer-aided Materials Design, 14(2):253-308, 2007.

S. D. Collins, A. Chatterjee, and D. G. Vlachos. Coarse-
grained Kinetic Monte Carlo Models: Complex Lattices, Mul-
ticomponent Aystems, and Homogenization at the Stochastic
Level. J. Chem. Phys., 129(18), 2008.

(6]

(7]

(8]

(9]

D. Gillespie. Approximate Accelerated Stochastic Simula-
tion of Chemically Reacting Systems. Journal of Chemical
Physics, 115(4):1716-1733, 2001.

E. Martinez, J. Marian, M. H. Kalos, and J. M. Per-
lado. Synchronous Parallel Kinetic Monte Carlo for Contin-
uum Diffusion-reaction Systems. Journal of Computational
Physics, 227:3804-3823, Apr. 2008.

NVIDIA. NVIDIA CUDA Programming Guide Version 2.2.
2009.

T. Preis, P. Virnau, W. Paul, and J. J. Schneider. GPU
Accelerated Monte Carlo Simulation of the 2D and 3D Ising
Model. J. of Computational Phys.,228(12):4468-4477, 2009.

[10]

[11]

[12]

T.T. Marquez-Lago and K. Burrage. Binomial Tau-leap
Spatial Stochastic Simulation Algorithm for Applications in
Chemical Kinetics. J. of Chem. Phys., 127(10), 2007.

J.A. van Meel, A. Arnold, D. Frenkel, S.F. Portegies-Zwart,
and R.G. Belleman. Harvesting Graphics Power for MD
Simulations. Molecular Simulation, 2008.

K. Yasuda. Accelerating Density Functional Calculations with
Graphics Processing Unit. J. of Chem. Theory Comput., 4(8),
1230-1236 2008.

